viernes, 29 de noviembre de 2013

Johann Carl Friedrich Gauss, André-Marie Ampère, Michael Faraday, Heinrich Friedrich Emil Lenz

Historia de Gauss y como descubrio el campo magnético

Johann Carl Friedrich Gauss Acerca de este sonido (Gauß) (?·i) (Brunswick, 30 de abril de 1777 – Gotinga, 23 de febrero de 1855), fue un matemático, astrónomo, geodesta, y físico alemán que contribuyó significativamente en muchos campos, incluida la teoría de números, el análisis matemático, la geometría diferencial, la estadística, el álgebra, la geodesia, el magnetismo y la óptica. Considerado «el príncipe de las matemáticas» y «el matemático más grande desde la antigüedad», Gauss ha tenido una influencia notable en muchos campos de la matemática y de la ciencia, y es considerado uno de los matemáticos que más influencia ha tenido en la Historia. Fue de los primeros en extender el concepto de divisibilidad a otros conjuntos.
Gauss fue un niño prodigio, a pesar de su condición de ser de una familia campesina de padres analfabetos; de él existen muchas anécdotas acerca de su asombrosa precocidad. Hizo sus primeros grandes descubrimientos mientras era apenas un adolescente en el bachillerato y completó su magnum opus, Disquisitiones arithmeticae a los veintiún años (1798), aunque fue publicado en 1801. Fue un trabajo fundamental para que se consolidara la teoría de los números y ha moldeado esta área hasta los días presentes.

Juventud.

Johann Carl Friedrich Gauss nació en el ducado de Brunswick, Alemania, el 30 de abril de 1777, en una familia campesina muy pobre: su abuelo era un humilde jardinero y repartidor. Su padre nunca pudo superar la espantosa miseria con la que siempre convivió. De pequeño Gauss fue respetuoso y obediente, y ya en su edad adulta nunca criticó a su padre, quien murió poco después de que Gauss cumpliera 30 años, por su rudeza y violencia para con él.
Desde muy pequeño, Gauss mostró su talento para los números y para el lenguaje. Aprendió a leer solo y, sin que nadie lo ayudara, aprendió muy rápido la aritmética elemental desde muy pequeño. En 1784, a los siete años de edad, ingresó a una de las escuelas de primeras letras de Brunswick donde daba clases un maestro rural llamado Büttner, quien corrigió rápidamente su lectura, le enseñó gramática, ortografía y caligrafía y perfeccionó su talento matemático y lo animó a continuar el bachillerato, como consta en su carta para que lo aceptaran en el Lyceum; pero quien usaba unos métodos severos y una estricta disciplina, lo que desagradaba a alguien tan sensible. Se cuenta la anécdota de que, a los dos años de estar en la escuela, durante la clase de Aritmética, el maestro propuso el problema de sumar los números de una progresión aritmética.1 Gauss halló la respuesta correcta casi inmediatamente diciendo «Ligget se'» ('ya está'). Al acabar la hora se comprobaron las soluciones y se vio que la solución de Gauss era correcta, mientras que no lo eran muchas de las de sus compañeros.
Su pobreza no le hubiera permitido continuar estudiando, pero presentado ante el duque de Brunswick ingresó al bachillerato bajo su mecenazgo, allí conoció al matemático Martin Bartels quien fue su profesor y se aceleraron sus progresos en Matemáticas. Ambos estudiaban juntos, se apoyaban y se ayudaban para descifrar y entender los manuales que tenían sobre álgebra y análisis elemental. En estos años se empezaron a gestar algunas de las ideas y formas de ver las matemáticas, que caracterizaron posteriormente a Gauss. Se dio cuenta, por ejemplo, del poco rigor en muchas demostraciones de los grandes matemáticos que le precedieron, como Newton, Euler, Lagrange y otros más.
A los 12 años ya miraba con cierto recelo los fundamentos de la geometría, y a los 16 tuvo sus primeras ideas intuitivas sobre la posibilidad de otro tipo de geometría. A los 17 años, Gauss se dio a la tarea de completar lo que, a su juicio, habían dejado a medias sus predecesores en materia de teoría de números. Así descubrió su pasión por la aritmética, área en la que poco después tuvo sus primeros triunfos. Su gusto por la aritmética prevaleció por toda su vida, ya que para él «La matemática es la reina de las ciencias y la aritmética es la reina de las matemáticas». Gauss tenía 14 años cuando conoció al duque de Brunswick Ferdinand. Este quedó fascinado por lo que había oído del muchacho, y por su modestia y timidez, por lo que decidió hacerse cargo de todos los gastos de Gauss para asegurar que su educación llegara a buen fin.
Al año siguiente de conocer al duque, Gauss ingresó al Collegium Carolinum para continuar sus estudios, y lo que sorprendió a todos fue su facilidad para las lenguas. Aprendió y dominó el griego y el latín en muy poco tiempo. Estuvo tres años en el Collegium y, al salir, no tenía claro si quería dedicarse a las matemáticas o a la filología. En esta época ya había descubierto su ley de los mínimos cuadrados, lo que indica el temprano interés de Gauss por la teoría de errores de observación y su distribución.

Madurez

En 1796 demostró que se puede dibujar un polígono regular de 17 lados con regla y compás.
Fue el primero en probar rigurosamente el teorema fundamental del álgebra (disertación para su tesis doctoral en 1799), aunque una prueba casi completa de dicho teorema fue hecha por Jean Le Rond d'Alembert anteriormente.
En 1801 publicó el libro Disquisitiones arithmeticae, con seis secciones dedicadas a la Teoría de números, dándole a esta rama de las matemáticas una estructura sistematizada. En la última sección del libro expone su tesis doctoral. Ese mismo año predijo la órbita de Ceres aproximando parámetros por mínimos cuadrados.
En 1809 fue nombrado director del Observatorio de Gotinga. En este mismo año publicó Theoria motus corporum coelestium in sectionibus conicis Solem ambientium describiendo cómo calcular la órbita de un planeta y cómo refinarla posteriormente. Profundizó sobre ecuaciones diferenciales y secciones cónicas.
Gauss murió en Gotinga el 23 de febrero de 1855.

Disquisitiones arithmeticae.

La primera estancia de Gauss en Gotinga duró tres años, que fueron de los más productivos de su vida. Regresó a su ciudad natal Brunswick a finales de 1798 sin haber recibido ningún título en la Universidad, pero en ese momento su primera obra maestra, Disquisitiones arithmeticae, estaba casi lista aunque no se publicó por primera vez hasta 1801.
Este libro, escrito en latín, está dedicado a su mecenas, el duque Ferdinand, por quien Gauss sentía mucho respeto y agradecimiento. Es un tratado de la teoría de números en el que se sintetiza y perfecciona todo el trabajo previo en esta área. La obra consta de 8 capítulos pero el octavo no se pudo imprimir por cuestiones financieras. El teorema fundamental del álgebra establece que un polinomio en una variable, no constante y a coeficientes complejos, tiene tantas raíces como su grado.

Contribuciones a la Teoría del Potencial.

El Teorema de la divergencia de Gauss, de 1835 y publicado apenas en 1867, es fundamental para la teoría del potencial y la física. Coloca en un campo vectorial la integral del volumen para la divergencia de un campo vectorial en relación con la integral de superficie del campo vectorial alrededor de dicho volumen.

Magnetismo.

1831 será un año clave en la vida de Gauss. Si un año antes su hijo Eugen emigra a Estados Unidos al parecer por desavenencias familiares, este año muere Minna la segunda esposa de Gauss. Desde entonces será su hija Therèse la que se encargará de los asuntos domésticos.
 Pero a finales de ese año llega a Gottingën Wilhelm Weber, para ocupar la plaza de profesor de Física. A partir de este momento un decaído Gauss va a encontrar otra vez en la ciencia la solución de sus males familiares.
 Gauss y WeberEn estrecha colaboración con Weber Gauss desarrollará una intensa labor en el estudio del magnetismo terrestre. Acoge con entusiasmo la propuesta de Alexander von Humbodlt de crear una red de observatorios magnéticos que cubran toda la superficie terrestre.
 En la década de los 30 publica varias obras sobre el tema: Intensitas vis magneticae terrestris ad mensuram absolutam revocata (1832), que trata teorías actuales sobre magnetismo terrestre, anticipando las ideas de Poisson, la medida absoluta de la fuerza magnética y una definición empírica del magnetismo terrestre,  Allgemeine Theorie Erdmagnetismus (1839), en la que demuestra que solo puede haber dos polos y sienta las bases para determinar la intensidad de la componente horizontal de la fuerza magnética junto con el ángulo de inclinación. Se ayuda de la ecuación de Laplace y especifica la ubicación del polo sur magnético.

Ambos construyen el primer telégrafo electromagnético que conseguía transmitir hasta nueve letras por minuto a una distancia de 500 pies, la que se paraba el Observatorio Astronómico de la Facultad de Física.
 Junto a Weber es autor del primer atlas geomagnético terrestre y de más de 40 obras sobre mediciones magnéticas de la Sociedad de Magnetismo, fundada por ellos, y de nuevas herramientas para medir el campo magnético.
 Sin embargo, un hecho va a truncar esta fructífera colaboración, Weber, junto a otros 6 profesores, es despedido de su cargo por negarse a jurar fidelidad al nuevo rey Ernesto Augusto von Cumberland, que había derogado la constitución de 1833. Gauss, de carácter conservador, no movería un dedo a pesar de su influencia para detener el despido, a pesar de que entre los 7 de Gottingën estaban su propio yerno y su inseparable colaborador.
 Tras la marcha definitiva de Weber de Gottingën la producción científica de Gauss disminuye de forma rotunda. Trabaja en sus observaciones astronómicas, en dióptrica, en la teoría del potencial, en geodesia pero todas son obras menores.

Ley de Gauss del campo magnético

En física la ley de Gauss establece que el flujo de ciertos campos a través de una superficie cerrada es proporcional a la magnitud de las fuentes de dicho campo que hay en el interior de dicha superficie. Dichos campos son aquellos cuya intensidad decrece como la distancia a la fuente al cuadrado. La constante de proporcionalidad depende del sistema de unidades empleado.
Se aplica al campo electrostático y al gravitatorio. Sus fuentes son la carga eléctrica y la masa, respectivamente. También puede aplicarse al campo magnetostático.

André-Marie Ampère

(Lyon, 1775-Marsella, 1836) Físico francés. Fundador de la actual disciplina de la física conocida como electromagnetismo, ya en su más pronta juventud destacó como prodigio; a los doce años estaba familiarizado, de forma autodidacta, con todas las matemáticas conocidas en su tiempo. En 1801 ejerció como profesor de física y química en Bourg-en-Bresse, y posteriormente en París, en la École Centrale. Impresionado por su talento, Napoleón lo promocionó al cargo de inspector general del nuevo sistema universitario francés, puesto que desempeñó hasta el final de sus días.
El talento de Ampère no residió tanto en su capacidad como experimentador metódico como en sus brillantes momentos de inspiración: en 1820, el físico danés Hans Christian Oersted experimentó las desviaciones en la orientación que sufre una aguja imantada cercana a un conductor de corriente eléctrica, hecho que de modo inmediato sugirió la interacción entre electricidad y magnetismo; en sólo una semana, Ampère fue capaz de elaborar una amplia base teórica para explicar este nuevo fenómeno.
Esta línea de trabajo le llevó a formular una ley empírica del electromagnetismo, conocida como ley de Ampère (1825), que describe matemáticamente la fuerza magnética existente entre dos corrientes eléctricas. Algunas de sus investigaciones más importantes quedaron recogidas en su Colección de observaciones sobre electrodinámica (1822) y su Teoría de los fenómenos electromagnéticos (1826).
Su desarrollo matemático de la teoría electromagnética no sólo sirvió para explicar hechos conocidos con anterioridad, sino también para predecir nuevos fenómenos todavía no descritos en aquella época. No sólo teorizó sobre los efectos macroscópicos del electromagnetismo, sino que además intentó construir un modelo microscópico que explicara toda la fenomenología electromagnética, basándose en la teoría de que el magnetismo es debido al movimiento de cargas en la materia (adelantándose mucho a la posterior teoría electrónica de la materia). Además, fue el primer científico que sugirió cómo medir la corriente: mediante la determinación de la desviación sufrida por un imán al paso de una corriente eléctrica (anticipándose de este modo al galvanómetro).

Ley de Ampere

En física del magnetismo, la ley de Ampère, modelada por André-Marie Ampère en 1831,1 relaciona un campo magnético estático con la causa que la produce, es decir, una corriente eléctrica estacionaria. James Clerk Maxwell la corrigió posteriormente y ahora es una de las ecuaciones de Maxwell, formando parte del electromagnetismo de la física clásica.
La ley de Ampére explica, que la circulación de la intensidad del campo magnético en un contorno cerrado es igual a la corriente que lo recorre en ese contorno.
El campo magnético es un campo angular con forma circular, cuyas líneas encierran la corriente. La dirección del campo en un punto es tangencial al círculo que encierra la corriente.
El campo magnético disminuye inversamente con la distancia al conductor.

Michael Faraday.

(Newington, Gran Bretaña, 1791-Londres, 1867) Científico británico. Uno de los físicos más destacados del siglo XIX, nació en el seno de una familia humilde y recibió una educación básica. A temprana edad tuvo que empezar a trabajar, primero como repartidor de periódicos, y a los catorce años en una librería, donde tuvo la oportunidad de leer algunos artículos científicos que lo impulsaron a realizar sus primeros experimentos.
Tras asistir a algunas conferencias sobre química impartidas por sir Humphry Davy en la Royal Institution, Faraday le pidió que lo aceptara como asistente en su laboratorio. Cuando uno de sus ayudantes dejó el puesto, Davy se lo ofreció a Faraday. Pronto se destacó en el campo de la química, con descubrimientos como el benceno y las primeras reacciones de sustitución orgánica conocidas, en las que obtuvo compuestos clorados de cadena carbonada a partir de etileno.
En esa época, el científico danés Hans Christian Oersted descubrió los campos magnéticos generados por corrientes eléctricas. Basándose en estos experimentos, Faraday logró desarrollar el primer motor eléctrico conocido. En 1831 colaboró con Charles Wheatstone e investigó sobre fenómenos de inducción electromagnética. Observó que un imán en movimiento a través de una bobina induce en ella una corriente eléctrica, lo cual le permitió describir matemáticamente la ley que rige la producción de electricidad por un imán.


Realizó además varios experimentos electroquímicos que le permitieron relacionar de forma directa materia con electricidad. Tras observar cómo se depositan las sales presentes en una cuba electrolítica al pasar una corriente eléctrica a su través, determinó que la cantidad de sustancia depositada es directamente proporcional a la cantidad de corriente circulante, y que, para una cantidad de corriente dada, los distintos pesos de sustancias depositadas están relacionados con sus respectivos equivalentes químicos.
Posteriores aportaciones que resultaron definitivas para el desarrollo de la física, como es el caso de la teoría del campo electromagnético introducida por James Clerk Maxwell, se fundamentaron en la labor pionera que había llevado a cabo Michael Faraday.

Ley de Faraday

La ley de inducción electromagnética de Faraday (o simplemente ley de Faraday) establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde:

Esta ley fue formulada a partir de los experimentos que Michael Faraday realizó en 1831. Esta ley tiene importantes aplicaciones en la generación de electricidad.

Heinrich Friedrich Emil Lenz

(Dorpat, 1804 - Roma, 1865) Físico ruso. Profesor y rector de la Universidad de San Petersburgo, estudió el efecto Peltier, la conductividad de los metales y la variación de la resistencia eléctrica con la temperatura. Enunció una ley que permite conocer la dirección y el sentido de la corriente inducida en un circuito eléctrico.
Estudió física y química en la Universidad de Dorpat y, muy joven aún, tomo parte como geofísico en una expedición alrededor del mundo, durante la cual efectuó mediciones sobre el nivel de sal, la temperatura y la presión de mares y océanos. Afincado luego en San Petersburgo, ejerció la docencia en la Universidad y en la Academia de Ciencias de esta ciudad, de la que llegaría a ser decano y rector.
Lenz estudió la conductividad eléctrica y descubrió el efecto conocido como efecto Joule con independencia de las experiencias y conclusiones a que a este respecto llegó el científico que le dio nombre. La ley de Lenz, enunciada en 1833, fue la gran aportación de Heinrich Lenz a los estudios electromagnéticos; esta ley permite determinar el sentido de la corriente inducida por una variación del flujo abarcado por un circuito.
Para generar una corriente eléctrica es preciso realizar un trabajo mecánico o bien, de algún modo, desarrollar una energía. Por lo tanto, de acuerdo con el principio de la conservación de la energía, la corriente generada constituirá una resistencia que hay que vencer. La ley de Lenz expresa esto diciendo que el sentido de la corriente inducida es tal que tiende a oponerse a la causa que la provoca. Así, al acercar un imán a una espira, la corriente inducida que aparece en ésta tiene un sentido de circulación tal que crea un campo magnético que repele el imán. Por otro lado, al separar el imán, la corriente inducida será ahora opuesta a la anterior y atraerá el imán.

Ley de Lenz.

La ley de Lenz para el campo electromagnético relaciona cambios producidos en el campo eléctrico en un conductor con la variación de flujo magnético en dicho conductor, y afirma que las tensiones o voltajes inducidos sobre un conductor y los campos eléctricos asociados son de un sentido tal que se oponen a la variación del flujo magnético que las induce. Esta ley se llama así en honor del físico germano-báltico Heinrich Lenz, quien la formuló en el año 1834. En un contexto más general que el usado por Lenz, se conoce que dicha ley es una consecuencia más del principio de conservación de la energía aplicado a la energía del campo electromagnético.
La polaridad de una tensión inducida es tal, que tiende a producir una corriente, cuyo campo magnético se opone siempre a las variaciones del campo existente producido por la corriente original.
El flujo de un campo magnético uniforme a través de un circuito plano viene dado por:




Si el conductor está en movimiento el valor del flujo será:

A su vez, el valor del flujo puede variar debido a un cambio en el valor del campo magnético:

En este caso la Ley de Faraday afirma que la tensión inducida  en cada instante tiene por valor:


Donde es el voltaje inducido y dΦ/dt es la tasa de variación temporal del flujo magnético Φ. La dirección voltaje inducido(el signo negativo en la fórmula) se debe a la oposición al cambio de flujo magnético.

No hay comentarios.:

Publicar un comentario